TITLE: Heteroscedastic regression modeling elucidates gene-by-environment interaction

FULL AUTHOR LIST: Benjamin W Domingue¹, Klint Kanopka¹, Sam Trejo¹, Elliot M Tucker-Drob²

AFFILIATIONS:
1. Graduate School of Education, Stanford University, Stanford CA
2. Department of Psychology, University of Texas at Austin, Austin TX

KEYWORDS: Gene-by-environment, GxE, Polygenic Score, BMI

ABSTRACT:
Gene-by-environment interaction (GxE) is inferred when a genetic measure accounts for differing amounts of variance in a phenotype across levels of the environment. However, total variance in the phenotype may shift as a function of the environment irrespective of its genetic etiology such that the proportional effect of the genetic measure is constant. We expand the traditional GxE regression model to directly model heteroscedasticity, and we derive a test statistic, ξ, for inferring whether GxE can be plausibly attributed to a more general effect of the environment on the dispersion of the phenotype. In simulation studies, we demonstrate that the test statistic can be utilized, along with evaluations of other model parameters, to adjudicate between multiple hypotheses regarding GxE. We then apply this method to test whether previous reports of increasing penetrance of polygenic scores for BMI in more recent birth cohorts may be due to more general secular increases in the variance of BMI. We provide an R function for estimating heteroscedastic GxE regression models and calculating ξ.

GRANT SUPPORT: This work has been supported in part by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1656518
(ST), by the Institute of Education Sciences under Grant No. R305B140009 (ST), NIH grants R01AG054628 and R01HD083613 (EMTD), and by the Jacobs Foundation (EMTD). Any opinions expressed are those of the authors alone and should not be construed as representing the opinions of either foundation.