TITLE: Integrative Multi-Omics Analysis of Epigenomic and Metabolomic data for Attention-Deficit/Hyperactivity Disorder

FULL AUTHOR LIST: Nikki Hubers¹, Fiona A. Hagenbeek¹,², Jenny van Dongen¹,², Sébastien Déjean¹¹, Peter J. Roetman³, Amy C. Harms⁴,⁵, Jouke Jan Hottenga¹, Cornelis Kluft⁶, Olivier F. Colins³,⁷, Catharina E.M. van Beijsterveldt¹, Marjolein M. L. J. Z. Vandenbosch¹, Eveline L. de Zeeuw¹,², Simone Talens⁶, Vassilios Fanos⁶, Erik A. Ehli⁹, Gareth E. Davies⁶, Robert R. J. M. Vermeiren³, Thomas Hankemeier⁴,⁵, Meike Bartels¹,²,¹⁰, René Pool¹,², Dorret I. Boomsma¹,²,¹⁰

AFFILIATIONS: ¹Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; ²Amsterdam Public Health Research Institute, Amsterdam, the Netherlands; ³Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; ⁴Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands; ⁵The Netherlands Metabolomics Centre, Leiden, The Netherlands; ⁶Good Biomarker Sciences, Leiden, the Netherlands; ⁷Department Special Needs Education, Ghent University, Ghent, Belgium; ⁸Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy; ⁹Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA; ¹⁰Amsterdam Neuroscience, Amsterdam, the Netherlands; ¹¹Toulouse Mathematics Institute, University of Toulouse, CNRS, Toulouse, France.

KEYWORDS: multi-omics, attention-deficit/hyperactivity disorder, epigenomics, metabolomics, twins

ABSTRACT: Attention-deficit/hyperactivity disorder (ADHD) is a complex trait with a substantial
heritability with other ‘omics’ e.g. epigenomics and metabolomics, influences on ADHD beginning to be explored. Multi-omics is an evolving field which combines data from multiple ‘omics’ levels and provides methods for their simultaneous analyses to identify biological mechanisms and biomarkers for complex traits. This project applies an integrative multi-omics method, called DIABLO, based on multi-block Partial Least Squares Discriminant Analysis (PLS-DA) to build a predictive model for ADHD from metabolomics and epigenomics data.

First-morning urine and buccal-cell samples were collected from 606 twins (N complete pairs = 275, mean age = 9.3 [SD=0.63], male = 54.9%) who took part in Netherlands Twin Register ACTION project (Aggression in Children: Unraveling gene-environment interplay to inform Treatment and Intervention strategies). Dichotomous ADHD status was based on the mother-rated Revised Conners’ Parent Rating Scale (CPRS-R). First, in 20% of the data, the discriminative capacities of each ‘omics’ level and pair-wise cross-omics relationships were analysed with PLS-DA and PLS, respectively. Next, multi-block PLS-DA was applied to 50% of the data. The resulting model was used to predict the ADHD status in the remaining 30% of the data. The model selected metabolites and methylation probes involved in dopaminergic pathways and oxidative stress, mechanisms that have previously been associated with ADHD. However, the predictive accuracy of the model was relatively low (Area under the curve = 0.449-0.588 p>0.10). Overall, the model seems promising and underlines the potential of a multi-omics approach in complex traits such as ADHD.

GRANT SUPPORT: “Aggression in Children: Unraveling gene-environment interplay to inform Treatment and Intervention strategies” (ACTION; European Union Seventh Framework Program under grant agreement no 602768). The Netherlands Twin Register is supported by grant NWO 480-15-001/674: Netherlands Twin Registry Repository and by multiple grants from the Netherlands Organization for Scientific Research (NWO) MB is supported by an ERC consolidator grant (WELL-BEING 771057 PI Bartels). JvD is supported by the NWO-funded X-omics project (184.034.019).