TITLE: Genetic, lifestyle and environmental risk factors for chronic pain revealed through GWAS

FULL AUTHOR LIST: Mischa Lundberg1,2, Adrian I. Campos3,4, Scott F. Farrell5,6,7, Geng Wang1, Michele M. Sterling5,6, Miguel E. Rentería3,4, Trung Thanh Ngo1, Gabriel Cuéllar-Partida1

AFFILIATIONS:
1. The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
2. Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
3. Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
4. Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
5. RECOVER Injury Research Centre, The University of Queensland, Brisbane, QLD 4029, Australia
6. NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, The University of Queensland, Brisbane, QLD 4029, Australia
7. Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia

KEYWORDS: genome-wide association study (GWAS), persistent pain, risk factors, genetic causality proportion, Mendelian randomization
ABSTRACT:

Chronic pain is a leading cause of disability worldwide with complex aetiologies that remain elusive. Here we explore the genetic architecture of chronic pain by performing a genome-wide association study on 188,352 cases and 69,627 controls from the UK Biobank. We identified two independent genome-wide significant loci (P<5×10^{-8}) associated with chronic pain near ADAMTS6 (rs113313884) and LEMD2 (rs10660361). Using gene-based association tests, we identified genetic variants associated with chronic pain (associated genes: DCAKD, NMT1, MLN, IP6K3; P<2×10^{-6}). Furthermore, genetic correlation (r_G) analyses revealed largely similar genetic influences between male and female patients (r_G=1), suggesting individual differences in the presentation of chronic pain may emerge due to environmental exposures and lifestyle factors. Using linkage disequilibrium score-regression applied to 1,328 complex traits, 548 (41%) were found to be genetically correlated with chronic pain (FDR<5%), of which 175 (13%) showed genetic causal relationships using the latent causal variable model and Generalised Summary-data-based Mendelian Randomisation. In particular, major depressive disorder, anxiety, smoking, body fat, BMI and musculoskeletal diseases were found to increase the risk of chronic pain, whereas diet, walking for pleasure and higher educational attainment were associated with a reduced risk. In conclusion, this data-driven hypothesis-free approach has uncovered several specific risk factors that warrant further examination to help deliver effective early screening and management strategies for chronic pain.

GRANT SUPPORT:
- University of Queensland Research Training Stipend
- University of Queensland Research Training Tuition Fee Offset
- CSIRO PhD Top Up Scholarship