TITLE: Do maternal intrauterine environmental influences that lower offspring birthweight causally increase offspring cardiometabolic risk factors in later life? A Mendelian randomization study of 45,849 genotyped parent offspring pairs in the HUNT study using the OpenMx software

FULL AUTHOR LIST: Gunn-Helen Moen1,2,3,4, Ben Brumpton3,5,6, Cristen Willer7,8,9, Bjørn Olav Åsvold10, Kåre Birkeland1, Michael C Neale11, Rachel M Freathy12, George Davey Smith4,6,13, Deborah A Lawlor4,6,13, Robert M Kirkpatrick11, Nicole M Warrington2,3,6*, David M Evans2,6*

AFFILIATIONS:
1Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
2The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.
3K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Norway.
4Population Health Science, Bristol Medical School, University of Bristol, UK.
5Department of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
6Medical Research Council Integrative Epidemiology Unit at the University of Bristol,
KEYWORDS: HUNT, Developmental Origin of Health and Disease, Birthweight, cardiometabolic disease

ABSTRACT:
There is a robust and well-documented observational relationship between lower birthweight and higher risk of cardiometabolic disease in later life. We investigated whether there was evidence for causal effects of the intrauterine environment, as proxied by maternal SNPs that influence offspring birthweight independent of offspring genotype, on offspring cardiometabolic risk factors. We investigated whether a genetic risk score of maternal SNPs associated with offspring birthweight was also associated with offspring cardiometabolic risk factors, after controlling for offspring genotypes at the same loci, in up to 45,849 parent-offspring pairs from the Nord-Trøndelag Health (HUNT) Study. We implemented a computationally efficient genetic linear mixed model using the OpenMx software package, which allowed us to take into account the considerable cryptic relatedness in the HUNT study, making maximum use of the data. We found little evidence for a maternal genetic effect of birthweight associated variants on offspring cardiometabolic risk factors after adjusting for offspring genotypes at the same loci. Likewise, we found little evidence for paternal genetic effects on offspring cardiometabolic risk factors performing similar analyses in father-offspring pairs. In
contrast, offspring genetic risk scores of birthweight-associated variants were strongly related to many cardiometabolic risk factors, even after conditioning on maternal genotypes at the same loci. Our results suggest that the maternal intrauterine environment, as proxied by maternal SNPs that influence offspring birthweight, is unlikely to be a major determinant of adverse cardiometabolic outcomes. In contrast, genetic pleiotropy in the offspring genome explains some of the observational relationship between birthweight and cardiometabolic risk.

GRANT SUPPORT: Support for this research have been given by the Norwegian Diabetes Association and Nils Normans minnegave. G.H.M is supported by the Norwegian Research Council (Post doctoral mobility research grant 287198). N.M.W. is supported by an Australian National Health and Medical Research Council Early Career Fellowship (APP1104818). MCN and OpenMx development were funded by NIH grant DA-018673. D.A.L is supported by the British Heart Foundation (AA/18/7/34219) and European Research Council (669545). D.A.L, G.D.S, D.M.E are affiliated with a Unit that receives support from the University of Bristol and the UK Medical Research Council (MC_UU_00011/1 and MC_UU_00011/6). D.M.E. is funded by an Australian National Health and Medical Research Council Senior Research Fellowship (APP1137714) and NHMRC project grants (GNT1125200, GNT1157714, GNT1183074). RMF is supported by a Wellcome Trust and Royal Society Sir Henry Dale Fellowship (104150/Z/14/Z)