TITLE: Evaluation of Polygenic Prediction Methodology within a Reference-Standardized Framework

FULL AUTHOR LIST: Oliver Pain1,2, Kylie P. Glanville1, Saskia Hagenaars1, Saskia Selzam1, Anna E. Fürtjes1, Helena Gaspar1, Jonathan R. I. Coleman1, Kaili Rimfeld1, Gerome Breen1,2, Robert Plomin1, Lasse Folkersen2, Cathryn M. Lewis1,2,3.

AFFILIATIONS:
1Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF, United Kingdom
2NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, SE5 8AF, UK.
3Institute of Biological Psychiatry, Sankt Hans Hospital, Copenhagen, 4000 Roskilde, Denmark
4Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, SE1 9RT, UK.

KEYWORDS: polygenic scores, reference-standardized, prediction, elastic net, GWAS

ABSTRACT:

\textbf{Background:} The predictive utility of polygenic scores is increasing but it is unclear which polygenic scoring method performs best. It is often advantageous to calculate polygenic scores using a reference-standardized framework, using a common set of variants and reference-estimated linkage disequilibrium and allele frequencies. This study evaluates the predictive utility of several polygenic scoring methods within a reference-standardized framework.

\textbf{Methods:} The following methods are evaluated using anthropometric, neuropsychiatric
and complex disease outcomes measured in UK Biobank and Twins Early Development Study (TEDS): p-value thresholding and clumping (pT+clump), SBLUP, lassosum, LDPred, PRScs and SBayesR. Strategies to identify optimal p-value threshold and shrinkage parameters are compared, including 10-fold cross validation, pseudovalidation (no validation sample), and multi-polygenic score elastic net models.

Results: Using 10-fold cross-validation to identify the most predictive p-value threshold or shrinkage parameter, lassosum, PRScs and LDPred provided optimal prediction (relative improvement of 14-17% over pT+clump). Using pseudovalidation to optimize the polygenic score, the best method was PRScs, with a relative improvement of >11% over other pseudovalidation methods (lassosum, SLBLUP, SBayesR, LDPred), and only 1% worse than the best polygenic score identified by 10-fold cross validation. Elastic net models containing polygenic scores based on a range of parameters consistently improve prediction over any single polygenic score.

Conclusion: Within a reference-standardized framework, the best polygenic prediction was achieved using lassosum, PRScs, modelling multiple polygenic scores that are derived using a range of parameters. As polygenic scores are widely applied in research studies, users should be aware of differences in prediction across methods.

GRANT SUPPORT: Funded by the MRC (MR/N015746/1), and the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London