Polygenic prediction within and between families from a 3–million–person GWAS of educational attainment

Aysu Okbay¹, Yeda Wu², Nancy Wang³, Hariharan Jayashankar⁴, Michael Bennett³, Seyed Moeen Nehzati⁴, Julia Sidorenko², Hermon Kweon¹, Grant Goldman³, Tamara Gjorgjieva³, Yunxuan Jiang⁵, Chao Tian⁵, Rafael Ahlskog⁶, Patrik K.E. Magnusson⁷, Sven Oskarsson⁶, Caroline Hayward⁸, Archie Campbell⁹, David Porteous¹⁰,¹¹, Jeremy Freese¹², Pamela Herd¹³, 23andMe Research Team¹⁴, Social Science Genetic Association Consortium¹⁴, Chelsea Watson⁴, Jonathan Jala⁴, Dalton C. Conley¹⁵, Philipp D. Koellinger¹,¹⁶, Magnus Johannesson¹⁷, David I. Laibson¹⁸, Michelle N. Meyer¹⁹, James J. Lee²⁰, Augustine Kong²¹, Loïc Yengo², David Cesarini³,²²,²³, Patrick Turley²⁴,²⁵, Peter M. Visscher², Jonathan P. Beauchamp²⁶, Daniel J. Benjamin³,⁴,²⁷, and Alexander I. Young⁴

¹ Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
² Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.
³ National Bureau of Economic Research, Cambridge, MA, USA.
⁴ UCLA Anderson School of Management, Los Angeles, CA, USA.
⁵ 23andMe, Inc., Mountain View, CA, USA.
⁶ Department of Government, Uppsala University, Uppsala, Sweden.
⁷ Swedish Twin Registry, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
⁸ MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom.
⁹ Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom.
¹⁰ Usher Institute, University of Edinburgh, Edinburgh, United Kingdom.
¹¹ Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom.
¹² Department of Sociology, Stanford University, Stanford, CA, USA.
¹³ McCourt School of Public Policy, Georgetown University, Washington, DC, USA.
¹⁴ A full list of members and affiliations appears at the end of the paper.
¹⁵ Department of Sociology, Princeton University, Princeton, NJ, USA.
¹⁶ Robert M. La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA.
¹⁷ Department of Economics, Stockholm School of Economics, Stockholm, Sweden.
¹⁸ Department of Economics, Harvard University, Cambridge, MA, USA.
¹⁹ Center for Translational Bioethics and Health Care Policy, Geisinger Health System, Danville, PA, USA.
²⁰ Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA.
KEYWORDS: Educational attainment, GWAS, direct/indirect effects, dominance, polygenic score

ABSTRACT: Educational attainment (EA) is an important dimension of socioeconomic status that features prominently in research by social scientists, epidemiologists, and other medical researchers. We conduct a GWAS of EA in a sample of 3,037,499 individuals and identify 3,952 approximately uncorrelated genome-wide-significant SNPs. We also conduct a GWAS of the X chromosome \((N = 2,713,033)\) and the first large-scale GWAS of dominance variance of EA on the autosomes \((N = 2,574,253)\). Our X-chromosome GWAS identifies 57 approximately uncorrelated genome-wide-significant SNPs. Our dominance GWAS identifies no genome-wide-significant SNPs; moreover, with high confidence, we can rule out the existence of any common SNPs whose dominance effects explain more than a negligible fraction of the variance in EA. We report evidence of directional dominance for EA. We also investigate the scope and sources of the predictive power of a genome-wide polygenic predictor, or polygenic index (PGI), of EA. The PGI explains 12-16% of the variation in EA and adds non-trivial predictive power for 10 diseases we examine, even after controlling for disease-specific PGIs. Using a combined sample of \(~53,000\) individuals with genotyped siblings and \(~3,500\) individuals with both parents genotyped, we examine the predictive power of the EA PGI controlling for parental EA PGIs. The PGI’s associations with EA and other phenotypes falls by roughly half when controlling for parental PGIs. Finally, we use the EA and other PGIs to study assortative mating and find that the correlation between spouses’ EA PGIs is far too large to be consistent with phenotypic assortment alone.

GRANT SUPPORT: The study was supported by funding from the Ragnar Söderberg Foundation (E42/15, D.C.); the Swedish Research Council (421-2013-1061, M.J.; 2019-00244, S.O.); an ERC Consolidator Grant (647648 EdGe, P.K.); the Pershing Square Fund of the Foundations of Human Behavior (D.L.); Open Philanthropy (010623-00001, D.J.B., P.T., M.N.M.); Riksbankens Jubileumsfond P18-0782:1 (S.O.); Netherlands Organisation for Scientific Research VENI grant 016.Veni.198.058 (A.O.); and the NIA/NIH through grants R24-AG065184 (D.J.B.) and R01-AG042568 (D.J.B.) to the University of California Los Angeles; K99-AG062787-01 (P.T.) to Massachusetts General Hospital; the NIA/NIMH through grants 1R01-MH101244-02 (P.T.; PI: Benjamin M. Neale) and SU01-MH109539-02 (P.T.; PI: B.M.N.) to the Broad Institute at Harvard and MIT; the Government of Canada through Genome Canada and the Ontario Genomics Institute (OGI-152) (J.P.B.); the Social Sciences and Humanities Research Council of Canada (J.P.B.); the National Health and Medical Research Council through grant GNT113400 (P.M.V.); and the Australian Research Council (P.M.V.).