Systematic identification of genetic loci associated with both cannabis use disorder and schizophrenia

Emma C Johnson¹, Sarah MC Colbert¹, Alexander S Hatoum², Joseph D Deak²,³, Renato Polimanti²,³, Robin Murray⁴, Howard J Edenberg⁵,⁶, Joel Gelernter²,³,⁷, Marta Di Forti⁸, Arpana Agrawal¹
¹Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri, USA
²Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
³Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut, USA
⁴Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
⁵Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
⁶Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
⁷Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
⁸Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom

KEYWORDS: cannabis, schizophrenia, cross-disorder, genome wide association study, genetic overlap

ABSTRACT: Recent genome-wide association studies (GWAS) have found modest but significant genetic correlations between schizophrenia (SCZ) and cannabis ever-use (Pasman et al., 2018), and between SCZ and cannabis use disorder (CUD; Johnson et al., 2020). No study has yet examined the specific genetic loci and biological pathways associated with both CUD and SCZ liability. Using the largest genome-wide datasets available (Ns 46,213 - 632,802), we applied ASSET, a cross-disorder method, to identify >100 independent genome-wide significant loci pleiotropic for CUD and SCZ. A previously identified chromosome 8 locus that contains the genes EPHX2 and CHRNA2 showed a particularly strong signal for both CUD and SCZ, suggesting that this may be a point of shared genetic vulnerability. As tobacco smoking is phenotypically and genetically correlated with both CUD and SCZ, we also plan to use LAVA to examine bivariate and local genetic correlations between CUD and SCZ after conditioning on tobacco smoking and other potential confounds (e.g., SES).


GRANT SUPPORT: K01DA051759 (ECJ), DA054869 (AA, HJE, JG)