A role of adolescent lifestyle habits in biological aging: a prospective twin study

Anna Kankaanpää1, Asko Tolvanen2, Aino Heikkinen3, Jaakko Kaprio3, Miina Ollikainen3,4, Elina Sillanpää1,3

1 Gerontology Research Center (GEREC), Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
2 Methodology Center for Human Sciences, University of Jyväskylä, Jyväskylä, Finland
3 Institute for Molecular Medicine Finland (FIMM), HiLife, University of Helsinki, Helsinki, Finland
4 Department of Public Health, University of Helsinki, Helsinki, Finland

KEYWORDS: twin study, epigenetic clock, biological aging, lifestyle, adolescence, latent class analysis

ABSTRACT:

Adolescence is a stage of fast growth and development. Exposures during puberty may have long-term effects on health in later life. In this study, we aimed to investigate the role of adolescent lifestyle in biological aging. Biological aging was assessed in young adulthood by four measures of epigenetic aging. Study participants were twin pairs (n=371) aged 21–25 years from the Finnish Twin Cohort. Blood-based DNA methylation (DNAm) was used to assess epigenetic aging by Horvath’s clock, DNAm PhenoAge, DNAm GrimAge, and DunedinPoAm estimators. Adolescent lifestyle-related factors, including body mass index, leisure-time physical activity, smoking, and alcohol use were measured at ages of 12, 14, and 17 years. First, latent class analysis was conducted to identify patterns of lifestyle behaviors in adolescence. We identified six subgroups of participants with different lifestyle behavior patterns. Second, the mean differences across the subgroups in later biological aging were studied using the Bolck-Croon-Hagenaars (BCH) approach. The groups with the healthier lifestyle behaviors were biologically younger compared to the groups with unhealthy habits. However, the differences were observed only when DNAm GrimAge and DunedinPoAm estimators were used to assess biological aging. These findings suggest that adolescent lifestyle may associate with biological aging process. Of measures of epigenetic aging, DNAm GrimAge and DunedinPoAm estimators may capture adolescent lifestyle-induced changes in biological aging. We are currently extending our analysis to include ACE components. Our purpose is to investigate the genetic and environmental factors underlying the observed differences in biological aging between the subgroups.

GRANT SUPPORT: This work was supported by the Academy of Finland [213506, 265240, 263278, 312073 to JK, and 297908 to MO], EC FP5 GenomEUtwin (JK), NIH NIH/NHLBI (grant HL104125), EC MC ITN Project EPITRAIN (JK & MO) project and the University of Helsinki Research Funds to MO, Sigrid Juselius Foundation to JK and MO, Yrjö Jahnsson foundation (6868) and Juho Vainio foundation to ES.