TITLE:
Local genetic correlation analysis reveals heterogeneous etiologic sharing of autism spectrum disorder and cognitive performance

FULL AUTHOR LIST:
Qiongshi Lu¹, Yiliang Zhang², Yixuan Ye³, Kunling Huang⁴, Wei Liu³, Yuchang Wu¹, Xiaoyuan Zhong¹, Boyang Li², Zhaolong Yu³, Brittany G. Travers⁵, Donna M. Werling⁶, James J. Li⁷, Hongyu Zhao²

AFFILIATIONS:
1 Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA 53706
2 Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA 06510
3 Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA 06510
4 Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA 53706
5 Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA 53706
6 Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA 53706
7 Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA 53706
KEYWORDS:
statistical genetics; GWAS; local genetic correlation; autism spectrum disorder; intelligence

ABSTRACT:
Local genetic correlation quantifies the genetic similarity of complex traits in specific genomic regions, which could shed unique light on etiologic sharing and provide additional mechanistic insights into the genetic basis of complex traits compared to global genetic correlation. However, accurate estimation of local genetic correlation remains challenging, in part due to extensive linkage disequilibrium in local genomic regions and pervasive sample overlap across studies. We introduce SUPERGNOVA, a unified framework to estimate both global and local genetic correlations using summary statistics from genome-wide association studies. Through extensive simulations and analyses of 30 complex traits, we demonstrate that SUPERGNOVA substantially outperforms existing methods and identifies 150 trait pairs with significant local genetic correlations. In particular, we show that the positive, consistently-identified, yet paradoxical genetic correlation between autism spectrum disorder and cognitive performance could be explained by two etiologically-distinct genetic signatures with bidirectional local genetic correlations. We believe that statistically-rigorous local genetic correlation analysis could accelerate progress in complex trait genetics research.

GRANT SUPPORT:
This study was Supported by NIH grants 3P30AG021342-16S2 and 1R01GM122078 and NSF grants DMS 1713120 and DMS 1902903. Q.L is supported by the Clinical and Translational Science Award (CTSA) program, through the NIH National Center for Advancing Translational Sciences (NCATS), grant UL1TR000427. We also acknowledge research support from the University of Wisconsin-Madison Office of the Chancellor and the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation and the Waisman Center pilot grant program at the University of Wisconsin-Madison.