Genetic and Environmental Influences on Sleep–Wake Behaviors in Adolescence

Victoria S. O’Callaghan1, Narelle K. Hansell1, Wei Guo2, Joanne Carpenter3, Haochang Shou4,5, Lachlan T. Strike1, Kerrie McAloney6, Katie L. McMahon6, Enda M. Byrne7, Nicholas G. Martin8, Ian B. Hickie1, Kathleen Merikangas4, Margaret J. Wright1, 9

1 Queensland Brain Institute, University of Queensland, Brisbane, Australia
2 Statistical Genomics and Data Analysis Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
3 Brain and Mind Institute, University of Sydney, Sydney, NSW, Australia.
4 Genetic Epidemiology Branch, National Institute of Mental Health, National Institutes of Health Bethesda, MD, USA
5 Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
6 Queensland University of Technology, Brisbane, Australia
7 Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
8 QIMR Berghofer Medical Research Institute, Brisbane, QLD 4066, Australia
9 Centre for Advanced Imaging, University of Queensland, Brisbane, Australia

KEYWORDS: Sleep, Adolescence, heritability, twins, genetics, actigraphy

ABSTRACT:

The study objective was to investigate the role of genetic and environmental factors on sleep-wake behaviors across adolescence and differences between school and non-school nights. Four hundred and ninety-five participants (aged 9 to 18; 55% females), including 93 monozygotic (MZ) and 117 dizygotic (DZ) twin pairs, and 75 unmatched twins, wore a wrist activity monitor and completed a sleep diary for two weeks. Individual differences in sleep onset, wake time, and sleep midpoint were similarly influenced by additive genetic (50%; 48%; 44% of total variance) and shared environmental (36%; 31%; 42%) factors, with a predominant genetic influence for sleep duration (62%) and restorative sleep (43%). When we stratified by age, in older adolescents (aged 16-17), genes accounted for more of the variance than in younger adolescents (aged 9-14), and shared environmental factors were no longer significant. Bivariate analyses showed sleep duration and sleep midpoint were correlated ($r_p = -.43, r_G = .54$), due to a common genetic source. Additionally, while heritability was similar for school and non-school nights, there were genetic sources common and specific to each night type for all objectively measured sleep-wake behaviors. Across adolescence, there is a strong genetic influence on sleep phenotypes, but genes have a greater impact on older adolescents' sleep timing than younger adolescents, likely to be influenced by family environment. The relationship between sleep maintenance and chronotype is entirely due to a common genetic source. Both common and specific genetic sources influence sleep-wake behaviors on school and non-school nights in adolescence.