The role of serotonergic and inflammatory system genes in individual differences in depression level

Yuliya Davydova¹, Anastasiya Kazantseva¹, Renata Enikeeva¹, Rustam Mustafin², Zalina Takhirova³, Marina Lobaskova³, Sergey Malykh³,4, Elza Khusnutdinova¹,4

¹Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
²Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, Ufa, Russian Federation
³Psychological Institute of the Russian Academy of Education, Moscow, Russian Federation
⁴Lomonosov Moscow State University, Moscow, Russian Federation

KEYWORDS: depression, serotonin, inflammation, GxE-interaction

ABSTRACT:
Depression is an important public health issue due to its high prevalence and socio-economic costs to society. A multifactorial nature of depression suggests the involvement of multiple genes of small effect and environmental factors in its development, thus requiring simultaneous examination of genetic and environmental predictors. Considering the role of serotonergic and inflammatory functioning in emotional regulation, the present study aimed to estimate both the main effect of polymorphic variants of serotonergic (SLC6A4 5-HTTLPR, HTR1B rs13212041, HTR2A rs7322347) and inflammatory (TNF rs1041981, CRP rs3093077, IL1B rs16944) system genes, and GxE-interactions in individual differences in depression in healthy individuals. The study included 999 mentally healthy individuals (80.5% women; 19.98±1.80 years) of Caucasian origin (327 Russians, 242 Tatars, 233 Udmurts, 112 Bashkirs and 85 of mixed ethnicity) from Russia. Depression was assessed using BDI. SNPs genotyping was performed used Real-Time PCR. Statistical analysis was conducted with PLINK v.1.9 followed by FDR correction for multiple testing. Statistical analysis revealed association of the TNF rs1041981 A-allele and decreased depression level in Russians (β= −1.44; P=0.04), while the SLC6A4 5-HTTLPR LL-genotype was statistically significantly more frequent in men with enhanced depression score (β=3.79; P=0.009; P_{FDR}=0.13). As a result of stratification analysis we observed that birth season significantly affected association of TNF rs1041981 (β= −2.21; P=0.006; P_{FDR}=0.04), IL1B rs16944 (β= −2.21; P=0.04) and depression level in the total sample. The present study provides evidence that TNF, IL1B and SLC6A4 genetic variants may contribute to depression susceptibility together with environmental factors in mentally healthy young adults.